Date: _____

Lesson 8.2 Writing Linear Equations

Write an algebraic expression for each of the following.

1.	The sum of 6 and <i>u</i> .	2.	The difference "w less than 9."
		_	
3.	Divide z by 8.	4.	The product of <i>s</i> and 10.

Write a linear equation for each of the following. Then state the independent and dependent variables for each equation.

E	Example
Ros	ie has w books. Colin has 5 fewer books than Rosie.
Rosi	ie W
Coli	n
a)	Write an expression for the number of books that Colin has in terms of w . Colin's has $w - 5$ books.
b)	If Colin has p books, express p in terms of w.
	p = w - 5 is called a linear equation .
c)	State the independent and dependent variables.
~	Independent variable:, Dependent variable:

5. Alicia has x picture cards. Nigel has 10 fewer picture cards than Alicia.

a) Write an expression for the number of picture cards that Nigel has in terms of *x*.

b) If Nigel has y picture cards, express y in terms of x.

c) State the independent and dependent variables.

Independent variable: _____, Dependent variable: _____

6. Jane is g years old. Gary is 6 years older.

a) Write an expression for Gary's age in terms of g.

Date: _____

- Name: __
 - **b)** If Gary is *h* years old, express *h* in terms of *g*.

c) State the independent and dependent variables.

Independent variable: _____, Dependent variable: _____

- 7. A shirt costs *t* dollars. A pair of jeans costs \$35 more than the shirt.
 - a) Write an expression for the cost of the pair of jeans in terms of g.
 - **b)** If the pair of jeans costs *u* dollars, express *u* in terms of *t*.
 - c) State the independent and dependent variables.
- **8.** Joseph finished a test in *g* minutes. Catherine finished the same test in 8 minutes less than Joseph.
 - a) Write an expression for the number of minutes it took Catherine to finish the test, in terms of *g*.
 - **b)** If Catherine finished the test in *v* minutes, express *v* in terms of *g*.
 - c) State the independent and dependent variables.

Write a linear equation for each of the following. Then state the independent and dependent variables for each equation.

9. Joe took *d* photos of a birthday party. Keith took 4 times as many photos as Joe.

10. Joey bought *m* stickers. He divided the stickers among 10 children equally.

a) Write an expression for the number of stickers each child received in terms of *m*.

b) If each child received *w* stickers, express *w* in terms of *m*.

Name: _

c) State the independent and dependent variables.

Independent variable: _____, Dependent variable: _____

- **11.** Winston is *n* years old. His father is 3 times as old as Winston.
 - a) Write an expression for the age of Winston's father in terms of *n*.

b) If Winston's father is *s* years old, express *s* in terms of *n*.

c) State the independent and dependent variables.

- **12.** Arthur paid *b* dollars for 5 pairs of socks.
 - a) Write an expression for the cost of a pair of socks in terms of b.

b) If a pair of socks costs k dollars, express k in terms of b.

c) State the independent and dependent variables.

- **13.** The height of a table is *r* meters. The table is twice as tall as a chair.
 - a) Write an expression for the height of the chair in terms of r.

b) If the height of the chair is t meters, express t in terms of r.

c) State the independent and dependent variables.

Date: _____

Plot the points on a coordinate plane.

14. A (7, 5), B (1, 6), C (4, 3), and D (8, 2)

|
 |
|------|------|------|------|------|------|------|------|------|
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| |
 |
 | | | |
 |
 |
 |
| | | | | | |
 | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

15. *P* (2, 6), *Q* (4, 8), *R* (1, 5), and *S* (3, 7)

Complete the table. Then use the table to answer the questions.

Example

Sophia made *p* necklaces for a charity sale. Nicole made 3 more necklaces than Sophia.

a) If Nicole made q necklaces, write an equation relating p and q.

q = p + 3

b) Complete the table to represent the linear equation.

Number of Necklaces Sophia Made (<i>p</i>)	1	2	3	4	5
Number of Necklaces Nicole Made (q)	4	5	6	7	8

- **16.** Mandy spends a dollars during lunchtime. Jason spends \$4 more than Mandy.
 - a) If Jason spends *b* dollars, write an equation relating *a* and *b*.
 - **b)** Complete the table to represent the linear equation.

Amount of Money Mandy Spends (a dollars)	1	2	3	4	5
Amount of Money Jason Spends (<i>b</i> dollars)	5				

|
 |
|------|------|------|------|------|------|------|------|------|
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | |
 | | |
| | | | | | | | | |
| | | | | | | | | |
| |
 | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | l | | | | | (] |

- **17.** Adrian has *h* game cards. Ben has 2 fewer game cards than Adrian.
 - a) If Ben has p game cards, write an equation relating p and h.
 - **b)** Complete the table to represent the linear equation.

Number of Adrian's Game Cards (<i>h</i>)	2	4	6	8	10
Number of Ben's Game Cards (<i>p</i>)					

- **18.** A square has a side length of *k* inches.
 - **a)** If the perimeter of the square is q inches, write an equation relating q and k.
 - **b)** Complete the table to represent the linear equation.

Side Length of the Square (k inches)	1	2	3	4	5
Perimeter of the Square (q inches)					

	r		-						
									(

43.
$$b = 40$$

44. $s = 63$
45. $x + \frac{3}{8} = \frac{7}{8}$
 $x + \frac{3}{8} = \frac{7}{8}$
 $x = \frac{4}{2}$
 $x = \frac{1}{2}$
45. $y = \frac{7}{8}$
 $x = \frac{4}{2}$
 $x = \frac{1}{2}$
46. $y = \frac{7}{10}$
 $y = \frac{7}{10} = \frac{7}{10}$
 $y = \frac{7}{10} = \frac{7}{10}$
 $y = \frac{7}{10} = \frac{7}{10}$
 $y = \frac{1}{2}$
 $z = \frac{1}{2}$
 z

17. a) *p* = *h* − 2

Number of Adrian's Game Cards (<i>h</i>)	2	4	6	8	10
Number of Ben's Game Cards (p)	<u>0</u>	2	4	<u>6</u>	8

18. a) q = 4k

b)

c)

5

9

Side Length of the Square (<i>k</i> inches)	1	2	3	4	5
Perimeter of the Square (q inches)	<u>4</u>	8	<u>12</u>	<u>16</u>	<u>20</u>

Perimeter

Lesso n 8.3

7. Answers vary. Sample: When g = 14, g > 13 is true. When $g = \underline{15}$, g > 13 is true. When $g = \underline{20}$, g > 13 is true. When $g = \underline{78}$, g > 13 is true. The inequality g > 13 is true for any value of g that is greater than 13. 0-11 12 13 14 15 16 17