Lesson 8.2 Writing Linear Equations

Write an algebraic expression for each of the following.

1. The sum of 6 and u.
2. Divide z by 8 .
\qquad

Write a linear equation for each of the following. Then state the independent and dependent variables for each equation.

Example

Rosie has w books. Colin has 5 fewer books than Rosie.

a) Write an expression for the number of books that Colin has in terms of w.

Colin's has $W=-\quad 5$ books.
b) If Colin has p books, express p in terms of w.

c) State the independent and dependent variables.

Independent variable: \quad W_ Dependent variable: \quad _
\qquad
\qquad

Name: \qquad Date: \qquad
5. Alicia has x picture cards. Nigel has 10 fewer picture cards than Alicia.

a) Write an expression for the number of picture cards that Nigel has in terms of x.

Nigel has__ picture cards.
b) If Nigel has y picture cards, express y in terms of x.

c) State the independent and dependent variables.

Independent variable: \qquad Dependent variable: \qquad
6. Jane is g years old. Gary is 6 years older.

a) Write an expression for Gary's age in terms of g.

Gary's age is__yey_ years.

Name:
Date:
b) If Gary is h years old, express h in terms of g.

c) State the independent and dependent variables.

Independent variable: \qquad Dependent variable: \qquad
7. A shirt costs t dollars. A pair of jeans costs $\$ 35$ more than the shirt.
a) Write an expression for the cost of the pair of jeans in terms of g.
b) If the pair of jeans costs u dollars, express u in terms of t.
c) State the independent and dependent variables.
8. Joseph finished a test in g minutes. Catherine finished the same test in 8 minutes less than Joseph.
a) Write an expression for the number of minutes it took Catherine to finish the test, in terms of g.
b) If Catherine finished the test in v minutes, express v in terms of g.
c) State the independent and dependent variables.

Name: \qquad Date: \qquad

Write a linear equation for each of the following. Then state the independent and dependent variables for each equation.

Example

Shannen served 8 glasses of punch to her guests. Each glass contained y ounces of punch.

a) Write an expression for the number of ounces of punch Shannen served, in terms of y.

b) If Shannen served b ounces of punch, express b in terms of y.
\qquad
c) State the independent and dependent variables.

Independent variable: $\quad \mathrm{y}$, Dependent variable: $\quad b$
9. Joe took d photos of a birthday party. Keith took 4 times as many photos as Joe.

a) Write an expression for the number of photos that Keith took in terms of d.

b) If Keith took g photos, express g in terms of d.
\qquad
\qquad
c) State the independent and dependent variables.

Independent variable: \qquad Dependent variable: \qquad

Name:
Date:
10. Joey bought m stickers. He divided the stickers among 10 children equally.

a) Write an expression for the number of stickers each child received in terms of m.

b) If each child received w stickers, express w in terms of m.

c) State the independent and dependent variables.

Independent variable: \qquad Dependent variable: \qquad
11. Winston is n years old. His father is 3 times as old as Winston.
a) Write an expression for the age of Winston's father in terms of n.
b) If Winston's father is s years old, express s in terms of n.
c) State the independent and dependent variables.

Name:
Date:
12. Arthur paid b dollars for 5 pairs of socks.
a) Write an expression for the cost of a pair of socks in terms of b.
b) If a pair of socks costs k dollars, express k in terms of b.
c) State the independent and dependent variables.
13. The height of a table is r meters. The table is twice as tall as a chair.
a) Write an expression for the height of the chair in terms of r.
b) If the height of the chair is t meters, express t in terms of r.
c) State the independent and dependent variables.

Name: \qquad Date: \qquad

Plot the points on a coordinate plane.
14. $A(7,5), B(1,6), C(4,3)$, and $D(8,2)$

15. $P(2,6), Q(4,8), R(1,5)$, and $S(3,7)$

\qquad Date: \qquad

Complete the table. Then use the table to answer the questions.

Example

Sophia made p necklaces for a charity sale. Nicole made 3 more necklaces than Sophia.
a) If Nicole made q necklaces, write an equation relating p and q.
$q=p+3$
b) Complete the table to represent the linear equation.

Number of Necklaces Sophia Made (p)	1	2	3	4	5
Number of Necklaces Nicole Made (q)	4	5	6	7	8

c) Use the data from b) to plot the points on a coordinate plane.

Connect the points with a line.
Number of Necklaces Made

Name: \qquad Date: \qquad
16. Mandy spends a dollars during lunchtime. Jason spends $\$ 4$ more than Mandy.
a) If Jason spends b dollars, write an equation relating a and b.
b) Complete the table to represent the linear equation.

Amount of Money Mandy Spends (a dollars)	1	2	3	4	5
Amount of Money Jason Spends (b dollars)	5				

c) Use the data from b) to plot the points on a coordinate plane.

Connect the points with a line.

\qquad
\qquad
17. Adrian has h game cards. Ben has 2 fewer game cards than Adrian.
a) If Ben has p game cards, write an equation relating p and h.
b) Complete the table to represent the linear equation.

Number of Adrian's Game Cards (h)	2	4	6	8	10
Number of Ben's Game Cards (p)					

c) Use the data from b) to plot the points on a coordinate plane. Connect the points with a line.

Name: \qquad Date: \qquad
18. A square has a side length of k inches.
a) If the perimeter of the square is q inches, write an equation relating q and k.
b) Complete the table to represent the linear equation.

Side Length of the Square (k inches)	1	2	3	4	5
Perimeter of the Square (q inches)					

c) Use the data from b) to plot the points on a coordinate plane.

Connect the points with a line.

43. $b=40$
44. $s=63$
45. $x+\frac{3}{8}=\frac{7}{8}$

$$
\begin{aligned}
x+\frac{3}{8}-\underline{\frac{3}{8}} & =\frac{7}{8}-\frac{3}{8} \\
x & =\frac{4}{8} \\
& =\underline{\frac{1}{2}}
\end{aligned}
$$

$x=\frac{1}{2}$ is the solution of the equation $x+\frac{3}{8}=\frac{7}{8}$.
46.

$$
e+\frac{2}{10}=\frac{7}{10}
$$

$$
\begin{aligned}
e+\frac{2}{10} \bigodot \frac{2}{10} & =\frac{7}{10} \bigodot \frac{2}{10} \\
e & =\frac{\frac{5}{10}}{1} \\
& =\frac{\frac{1}{2}}{1}
\end{aligned}
$$

$e=\frac{1}{2}$ is the solution of the equation $e+\frac{2}{10}=\frac{7}{10}$.
47. $k=\frac{1}{3}$
48. $p=\frac{3}{4}$
49. $g-\frac{1}{6}=\frac{1}{6}$

$$
\begin{aligned}
g-\frac{1}{6}+\frac{1}{6} & =\frac{1}{6}+\frac{1}{6} \\
g & =\frac{\frac{2}{6}}{1} \\
& =\underline{\frac{1}{3}}
\end{aligned}
$$

$g=\frac{1}{3}$ is the solution of the equation $g-\frac{1}{6}=\frac{1}{6}$.
50. $\quad d-\frac{7}{15}=\frac{2}{15}$

$$
\begin{aligned}
d-\frac{7}{15} \oplus \frac{7}{15} & =\frac{2}{15} \oplus \frac{7}{15} \\
d & =\frac{9}{15} \\
& =\frac{3}{5}
\end{aligned}
$$

$d=\underline{\frac{3}{5}}$ is the solution of the equation $d-\frac{7}{15}=\frac{2}{15}$.
51. $w=\underline{\frac{3}{4}}$
52. $n=\frac{4}{5}$
53. $7 x=\frac{4}{7}$

$$
\begin{aligned}
7 x \div \underline{7} & =\frac{4}{7} \div \underline{7} \\
x & =\frac{4}{7} \cdot \frac{1}{7} \\
& =\underline{4}
\end{aligned}
$$

$x=\frac{4}{49}$ is the solution of the equation $7 x=\frac{4}{7}$.
54. $9 m=\frac{5}{6}$

$$
\begin{aligned}
9 m \doteqdot \underline{9} & =\frac{5}{6} \bigodot \underline{9} \\
m & =\frac{5}{6} \bigodot \frac{1}{9} \\
& =\underline{\frac{5}{54}}
\end{aligned}
$$

$m=\frac{5}{54}$ is the solution of the equation $9 m=\frac{5}{6}$.
55. $b=\frac{2}{21}$
56. $s=\frac{2}{9}$
57. $y=\frac{1}{12}$
58. $x=\frac{2}{15}$
59. $y=\frac{3}{28}$
60. $w=\frac{2}{11}$

Lesson 8.2

1. $6+u$
2. $9-w$
3. $\frac{z}{8}$
4. 10 s
5. a) $x-10$
b) $y=x-10$
c) Independent: x Dependent: y
6. a) $g+6$
b) $h=g+6$
c) Independent: g Dependent: h
7. a) $(t+35)$ dollars
b) $u=t+35$
c) Independent: t Dependent: u
8. a) $g-8$
b) $v=g-8$
c) Independent: g Dependent: v
9. a) $4 \cdot d=4 d$
b) $g=4 d$
c) Independent: d Dependent: g
10. a) $m \div 10=\frac{m}{10}$
b) $w=\frac{m}{10}$
c) Independent: m Dependent: w
11. a) $3 n$ years
b) $s=3 n$
c) Independent: n Dependent: s
12. a) $b \div 5=\frac{b}{5}$ dollars
b) $k=\frac{b}{5}$
c) Independent: b Dependent: k
13. a) $\frac{r}{2}$ meters
b) $t=\frac{r}{2}$
c) Independent: r Dependent: t
14.

15.

16. a) $b=a+4$
b)

Amount of Money Mandy Spends (a dollars)	1	2	3	4	5
Amount of Money Jason Spends (b dollars)	5	$\underline{6}$	$\underline{7}$	$\underline{8}$	$\underline{9}$

c) Amount of Money Spent
17. a) $p=h-2$
b)

Number of Adrian's Game Cards (h)	2	4	6	8	10
Number of Ben's Game Cards (p)	$\underline{0}$	$\underline{2}$	$\underline{4}$	$\underline{6}$	$\underline{8}$

c)

Number of Game Cards

18. a) $q=4 k$
b)

Side Length of the Square (k inches)	1	2	3	4	5
Perimeter of the Square (q inches)	$\underline{4}$	$\underline{8}$	$\underline{12}$	$\underline{16}$	$\underline{20}$

c)

Side Length (in.)

Lesso n 8.3

1. $16 \longrightarrow-20$
2. $87 \longrightarrow 78$
3. $35 \cdot 6=6 \cdot 35$
4. $60 \div 20 \rightarrow 20 \div 60$
5. $-5<-1$
6. $-12 \ll$
7. Answers vary. Sample:

When $g=\underline{14}, g>13$ is true.
When $g=\underline{15}, g>13$ is true.
When $g=\underline{20}, g>13$ is true.
When $g=\underline{78}, g>13$ is true.
The inequality $g>13$ is true
for any value of g that is
greater than 13.

